Math 255A Lecture 22 Notes

Daniel Raban

November 19, 2018

1 Riesz Projection and Spectra of Self-Adjoint Operators

1.1 Riesz projection

Let $T: B \to B$ be compact and $\lambda \in \operatorname{Spec}(T) \setminus \{0\}$. Then $(T - (\lambda + z)I)^{-1} = \sum_{j=-N}^{\infty} A_j z^j$ for some $1 \le N < \infty$.

Proposition 1.1 (Riesz). The operator $-A_{-1}$ is a projection onto the finite dimensional generalized eigenpace $N_{\lambda} = \bigcup_{k=1}^{\infty} \ker(T - \lambda I)^k$.

Proof. Multiply the Laurent expansion by z^{-j-1} for $-N \le -1 \le -1$, and integrate over $\partial D(0,r)$ with $0 < r \ll 1$. We get

$$A_{j} = \frac{1}{2\pi i} \int_{\partial D(0,r)} (T - (\lambda + z)I)^{-1} z^{-j-1} dz,$$

so we get

$$\Pi = -A_{-1} = \frac{1}{2\pi i} \int_{\partial D(0,r)} ((\lambda + z)I - T)^{-1} dz.$$

We now claim that Π is a projection. Let $0 < r_1 < r_2 \ll 1$, and write

$$\Pi^{2} = \int_{\partial D(0,r_{2})} \int_{\partial D(0,r_{1})} ((\lambda + w)I - T)^{-1} ((\lambda + z)I - T)^{-1} \frac{1}{2\pi i} dz \frac{1}{2\pi i} dw$$

$$= \int_{\partial D(0,r_{2})} \int_{\partial D(0,r_{1})} \frac{1}{w - z} ((\lambda + z)I - T)^{-1} \frac{1}{2\pi i} dz \frac{1}{2\pi i} dw$$

$$- \int_{\partial D(0,r_{2})} \int_{\partial D(0,r_{1})} \frac{1}{w - z} ((\lambda + w)I - T)^{-1} \frac{1}{2\pi i} dz \frac{1}{2\pi i} dw$$

Apply Cauchy's integral formula to both terms. The second term equals 0.

 $= \Pi$.

Now in the Laurent expansion, multiply by $T - (\lambda + z)I$ on the left to get

$$I = (T - \lambda I)A_{-N}z^{-N} + \sum_{j=-N+1}^{\infty} ((T - \lambda I)A_j - A_{j-1})z^j,$$

which gives

$$(T - \lambda I)A_{-N} = A_{-N}(T - \lambda I) = 0$$
$$(T - \lambda I)A_j - A_{j-1} = \begin{cases} 0 & j \neq 0, j \geq N+1\\ 1 & j = 0. \end{cases}$$

So $[T, A_j] = 0$ for all j, and

$$A_{-N} = (T - \lambda I)A_{-N+1} = (T - \lambda I)^2 A_{-N+2} = \dots = (T - \lambda I)^{N-1} A_{-1}.$$

We get that $(T - \lambda I)^N A_{-1} = 0$. Also, $I + A_{-1} = (T - \lambda I)A_0$, so applying $(T - \lambda I)^N$ gives us

$$(T - \lambda I)^N = A_0 (T - \lambda I)^{N+1}.$$

Thus, if $(T - \lambda I)^{N+1}x = 0$, then $(T - \lambda I)^N x = 0$. It follows that $N_{\lambda} = \ker(T - \lambda I)^N$, so $\dim(\ker(T_{\lambda})) < \infty$ because $T - \lambda I$ is Fredholm of index 0.

It remains to show that
$$\operatorname{im}(A_{-1}) = N_{\lambda} = \ker((T - \lambda I)^{N})$$
. If $x \in N_{\lambda}$, then $x + A_{-1}x = (T - \lambda I)A_{0}x = (T_{\lambda}I)^{2}A_{1}x = \cdots = (T - \lambda I)^{N}A_{N-1}x = 0$. So $\operatorname{im}(A_{-1}) = N_{\lambda}$.

We can write $B = N_{\lambda} \oplus \ker(\Pi)$. This is a T-invariant decomposition. Moreover, $(T - \lambda I)|_{N_{\lambda}}$ is nilpotent, and $(T - \lambda I)_{\ker(\Pi)}$ is bijective.

1.2 Spectra of self-adjoint operators

Assume now that B = H is a complex Hilbert space.

Definition 1.1. An operator is **self-adjoint** if $\langle Tx,y\rangle = \langle x,Ty\rangle$ for all $x,y\in H$.

Example 1.1. Let $H = L^2((0,1))$, and let $Tu(x) = \int_0^1 K(x,y)u(y) \, dy$, where $K \in C([0,1] \times [0,1])$ is such that $\overline{K(x,y)} = K(y,x)$.

Proposition 1.2. Let $T \in \mathcal{L}(H, H)$ be self-adjoint. Then $\operatorname{Spec}(T) \subseteq \mathbb{R}$, and the resolvent $R(z) = (T - zI)^{-1} \in \mathcal{L}(H, H)$ satisfies $||R(z)||_{\mathcal{L}(H, H)} \leq 1/|\operatorname{Im}(z)|$ for $z \in \mathbb{C} \setminus \mathbb{R}$.

Proof. Let z = i + iy with $y \neq 0$, and compute

$$||(T-zI)u||^2 = \langle (T-xI)u - iyu, (T-xI)u - iyu \rangle$$

$$= ||(T-x)u||^2 + \underbrace{i \langle ((T-x)u, yu) - i \langle yu, (T-x)u \rangle}_{=0} + y^2 ||u||^2.$$

We get

$$||(T-z)u||^2 = ||(T-x)u||^2 + y^2||u||^2 \ge y^2||u||^2,$$

so $||(T-zI)u|| \ge |\operatorname{Im}(z)|||u||$, so T-zI is injective and $\operatorname{im}(T-zI)$ is closed. So $H = \operatorname{im}(T-z) \oplus \operatorname{im}(T-z)^{\perp}$, where $\operatorname{im}(T-z)^{\perp} = \{x : \langle (T-z)y, x \rangle = 0 \, \forall y \in H\} = \ker(T-\overline{z}I) = \{0\}$. So we get that $T-zI : H \to H$ is bijective, and $||(T-z)^{-1}||_{\mathcal{L}(H,H)} \le 1/|\operatorname{Im}(z)|$.

Remark 1.1. Let $T \in \mathcal{L}(H, H)$. Then T is uniquely determined by the function $x \mapsto \langle Tx, x \rangle$. If $\langle Tx, x \rangle = 0$ for all x, then we polarize:

$$\langle T(y+z), y+z \rangle = 0,$$
 $\langle T(y+iz), y+iz \rangle = 0,$

for all $y, z \in H$, so

$$\langle Ty, z \rangle + \langle Tz, y \rangle = 0,$$
 $\langle Ty, z \rangle - \langle Tz, y \rangle = 0,$

which give us $\langle Ty, z \rangle = 0$. So T = 0. So T is self adjoint if and only if $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$.

Now let T be compact and self adjoint. Let $\lambda \in \operatorname{Spec}(T) \setminus \{0\}$. Then $z \mapsto (T - zI)^{-1}$ has a pole at $z = \lambda$, and the pole is simple. We get

$$(T - zI)^{-1} = \frac{\Pi\lambda}{\lambda - z} + \text{Hol}(z)$$

for $0 < |z - \lambda| \ll 1$. $\Pi \lambda$ is projection onto $\ker(T - \lambda I)$, and Π_{λ} is self-adjoint. Indeed, $\Pi_{\lambda} = \lim_{z \to \lambda} (\lambda - z)(T - zI)^{-1}$, and if z approaches λ along the real axis, then this is self-adjoint.

Next time, we will show that

$$(T - zI)^{-1} = \sum_{\lambda_j \in \text{Spec}(T) \setminus \{0\}} \frac{\prod \lambda_j}{\lambda_j - z}$$

for $Im(z) \neq 0$.